Координаты вектора. Направляющие косинусы

Для решения задач с векторами необходимо определить вектор на плоскости или в пространстве, то есть дать информацию о его направлении и длине.

Координаты вектора

Пусть задана прямоугольная декартова система координат (ПДСК) и произвольный вектор , начало которого совпадает с началом системы координат (рис. 1).

Координаты вектора a, в декартовой системе координат

Определение

Координатами вектора называются проекции и данного вектора на оси и соответственно:

Величина называется абсциссой вектора , а число - его ординатой. То, что вектор имеет координаты и , записывается следующим образом: .

Пример

Запись означает, что вектор имеет следующие координаты: абсцисса равна 5, ордината равна -2.

Сумма двух векторов, заданных координатами

Пусть заданы и , тогда вектор имеет координаты (рис. 2).

Сумма двух векторов, заданных своими координатами

Определение

Чтобы найти сумму двух векторов, заданных своими координатами, надо сложить их соответствующие координаты.

Пример

Задание. Заданы и . Найти координаты вектора

Решение.


Умножение вектора на число

Если задан , то тогда вектор имеет координаты , здесь - некоторое число (рис. 3).

Умножение вектора на число, в координатах

Определение

Чтобы умножить вектор на число, надо каждую координату этого вектора умножить на заданное число.

Пример

Задание. Вектор . Найти координаты вектора

Решение.

Рассмотрим далее случай, когда начало вектора не совпадает с началом системы координат. Предположим, что в ПДСК заданы две точки и . Тогда координаты вектора находятся по формулам (рис. 4):

Определение

Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат конца отнять соответствующие координаты начала.

Координаты вектора, заданного координатами начала и конца

Пример

Задание. Найти координаты вектора , если

Решение.

Направляющие косинусы

Определение

Направляющими косинусами вектора называются косинусы углов, образованных вектором с положительными направлениями осей координат.

Направление вектора однозначно задается направляющими косинусами. Для единичного вектора направляющие косинусы равны его координатам.

Если в пространстве задан вектор , то его направляющие косинусы вычисляются по формулам:

Направляющие косинусы, косинус альфа, бета и гамма

Здесь , и - углы, которые составляет вектор с положительными направлениями осей , и соответственно.

Основное свойство направляющих косинусов

Определение

Сумма квадратов направляющих косинусов равна единице.

1

Основное свойство направляющих косинусов, сумма их квадратов равна единице

Если известны направляющие косинусы вектора , то его координаты могут быть найдены по формулам:

Аналогичные формулы имеют место и в трехмерном случае - если известны направляющие косинусы вектора , то его координаты могут быть найдены по формулам:


Читать дальше: длина (модуль) вектора.