Содержание:

В данной теме мы подытожим раздел векторы, опишем все действия, которые можно совершать над векторами и какими свойствами они обладают.

Действия над векторами

Определение

Вектором называется направленный отрезок $\overline{A B}$ , где точка $A$ - начало, точка $B$ - конец вектора.

Суммой $\overline{a}+\overline{b}$ векторов $\overline{a}$ и $\overline{b}$ называют такой третий вектор $\overline{c}$, начало которого совпадает с началом $\overline{a}$, а конец - с концом $\overline{b}$ при условии, что конец вектора $\overline{a}$ и начало вектора $\overline{b}$ совпадают.

Свойства операции сложения:

1  $\overline{a}+\overline{b}=\overline{b}+\overline{a}$ - коммутативность

2  $(\overline{a}+\overline{b})+\overline{c}=\overline{a}+(\overline{b}+\overline{c})$ - ассоциативность

3  $\overline{a}+\overline{0}=\overline{a}$

4  $\overline{a}+(-\overline{a})=\overline{0}$

Определение

Разностью $\overline{a}-\overline{b}$ векторов $\overline{a}$ и $\overline{b}$ называется вектор $\overline{c}$ такой, что выполняется условие: $\overline{b}+\overline{c}=\overline{a}$.

Произведением $\alpha \overline{a}$ вектора $\overline{a}$ на число $\alpha$ называется вектор $\overline{b}$, удовлетворяющий условиям:

  1. $\overline{b} \| \overline{a}$
  2. $|\overline{b}|=|\alpha||\overline{a}|$
  3. $\overline{a} \uparrow \uparrow \overline{b}$, если $\alpha>0$, $\overline{a} \uparrow \downarrow \overline{b}$, если $\alpha \lt 0$.

Свойства умножения вектора на число:

1  $(\alpha \pm \beta) \overline{a}=\alpha \overline{a} \pm \beta \overline{a}$

2  $\alpha(\overline{a} \pm \overline{b})=\alpha \overline{a} \pm \alpha \overline{b}$

3  $\alpha(\beta \overline{a})=(\alpha \beta) \overline{a}=\beta(\alpha \overline{a})$

4  $1 \cdot \overline{a}=\overline{a}$

5  $-1 \cdot \overline{a}=-\overline{a}$

6  $0 \cdot \overline{a}=\overline{0}$

Определение

Скалярным произведением двух ненулевых векторов $\overline{a}$ и $\overline{b}$ называется число, равное произведению длин этих векторов на косинус угла между ними:

$$\bar{a} \bar{b}=\bar{a} \cdot \bar{b}=(\bar{a}, \bar{b})=|\bar{a}||\bar{b}| \cos (\bar{a}, \bar{b})$$

Свойства скалярного произведения:

1  $(\overline{a}, \overline{b})=(\overline{b}, \overline{a})$ - симметричность.

2  $(\overline{a}, \overline{a})=|\overline{a}|^{2}$. Обозначается $(\overline{a}, \overline{a})=\overline{a}^{2}$ и называется скалярный квадрат.

3  Если $\overline{a} \neq \overline{0}$, то $(\bar{a}, \bar{b})=|\bar{a}| \cdot Пр_{\bar{a}} \bar{b}$

4  Если $\overline{a} \neq \overline{0}$ и $\overline{b} \neq \overline{0}$ и $(\overline{a}, \overline{b})=0$, то $\overline{a} \perp \overline{b}$. Верно и обратное утверждение.

5  $(\overline{a}+\overline{b}, \overline{c})=(\overline{a}, \overline{c})+(\overline{b}, \overline{c})$

6  $(\lambda \overline{a}, \overline{b})=\lambda(\overline{a}, \overline{b})$

7  $(\alpha \overline{a}+\beta \overline{b}, \gamma \overline{c}+\delta \overline{d})=\alpha \gamma(\overline{a}, \overline{c})+\alpha \delta(\overline{a}, \overline{d})+\beta \gamma(\overline{b}, \overline{c})+\beta \delta(\overline{b}, \overline{d})$

Определение

Векторным произведением ненулевых векторов $\overline{a}$ и $\overline{b}$ называется вектор $\overline{c}$, обозначаемый символом $[\overline{a}, \overline{b}]$ или $\overline{a} \times \overline{b}$, длина которого $|\bar{c}|=|\bar{a}||\bar{b}| \sin (\bar{a}, \bar{b})$.

Свойства векторного произведения:

1  $[\overline{a}, \overline{b}]=\overline{0}$, тогда и только тогда, когда $\overline{a} \| \overline{b}$

2  $[\overline{a}, \overline{b}]=-[\overline{b}, \overline{a}]$

3  Модуль векторного произведения $|[\overline{a}, \overline{b}]|$ равен площади параллелограмма, построенного на заданных векторах $\overline{a}$ и $\overline{b}$ (рис. 2), т.е.

$$S=|[\bar{a}, \bar{b}]|=|\bar{a}||\bar{b}| \sin (\bar{a}, \bar{b})$$

4  $[\lambda \overline{a}, \overline{b}]=[\overline{a}, \lambda \overline{b}]=\lambda[\overline{a}, \overline{b}]$

5  $\left[\overline{a}_{1}+\overline{a}_{2}, \overline{b}\right]=\left[\overline{a}_{1}, \overline{b}\right]+\left[\overline{a}_{2}, \overline{b}\right] ;\left[\overline{a}, \overline{b}_{1}+\overline{b}_{2}\right]=\left[\overline{a}, \overline{b}_{1}\right]+\left[\overline{a}, \overline{b}_{2}\right]$

Определение

Смешанным произведением трех векторов $\overline{a}$, $\overline{b}$, $\overline{c}$ называется число, равное скалярному произведению вектора $\overline{a} \times \overline{b}$ на вектор $\overline{c}$: $(\overline{a}, \overline{b}, \overline{c})=([\overline{a}, \overline{b}], \overline{c})$

Свойства смешанного произведения:

1  $(\overline{a}, \overline{b}, \overline{c})=(\overline{a},[\overline{b}, \overline{c}])$

2  $(\overline{a}, \overline{b}, \overline{c})=(\overline{b}, \overline{c}, \overline{a})=(\overline{c}, \overline{a}, \overline{b})=-(\overline{b}, \overline{a}, \overline{c})=-(\overline{c}, \overline{b}, \overline{a})=-(\overline{a}, \overline{c}, \overline{b})$

3  Три вектора компланарны тогда и только тогда, когда $(\overline{a}, \overline{b}, \overline{c})=0$

4  Тройка векторов является правой тогда и только тогда, когда $(\overline{a}, \overline{b}, \overline{c})>0$. Если же $(\overline{a}, \overline{b}, \overline{c}) \lt 0$, то векторы $\overline{a}$, $\overline{b}$ и $\overline{c}$ образуют левую тройку векторов. \lt /p> \lt p>5  $(\lambda \overline{a}, \overline{b}, \overline{c})=(\overline{a}, \lambda \overline{b}, \overline{c})=(\overline{a}, \overline{b}, \lambda \overline{c})=\lambda(\overline{a}, \overline{b}, \overline{c})$

6  $\left(\overline{a}_{1}+\overline{a}_{2}, \overline{b}, \overline{c}\right)=\left(\overline{a}_{1}, \overline{b}, \overline{c}\right)+\left(\overline{a}_{2}, \overline{b}, \overline{c}\right)$

7  $\left(\overline{a}, \overline{b}_{1}+\overline{b}_{2}, \overline{c}\right)=\left(\overline{a}, \overline{b}_{1}, \overline{c}\right)+\left(\overline{a}, \overline{b}_{2}, \overline{c}\right)$

8  $\left(\overline{a}, \overline{b}, \overline{c}_{1}+\overline{c}_{2}\right)=\left(\overline{a}, \overline{b}, \overline{c}_{1}\right)+\left(\overline{a}, \overline{b}, \overline{c}_{2}\right)$

9  $([\overline{a}, \overline{b}], \overline{c})=\overline{b}(\overline{a}, \overline{c})-\overline{a}(\overline{b}, \overline{c}) ;(\overline{a},[\overline{b}, \overline{c}])=\overline{b}(\overline{a}, \overline{c})-\overline{c}(\overline{a}, \overline{b})$

10  Тождество Якоби: $(\overline{a},[\overline{b}, \overline{c}])+(\overline{b},[\overline{c}, \overline{a}])+(\overline{c},[\overline{a}, \overline{b}])=0$


Читать дальше: примеры решения задач с векторами.


Warning: file_put_contents(./students_count.txt): failed to open stream: Permission denied in /var/www/webmath-q2ws/data/www/webmath.ru/poleznoe/guide_content_banner.php on line 20
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 455 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!