Асимптоты графика функции

Виды асимптот

Определение

Прямая называется вертикальной асимптотой графика функции , если хотя бы одно из предельных значений или равно или .

Замечание. Прямая не может быть вертикальной асимптотой, если функция непрерывна в точке . Поэтому вертикальные асимптоты следует искать в точках разрыва функции.

Определение

Прямая называется горизонтальной асимптотой графика функции , если хотя бы одно из предельных значений или равно .

Замечание. График функции может иметь только правую горизонтальную асимптоту или только левую.

Определение

Прямая называется наклонной асимптотой графика функции , если

Нахождение наклонной асимптоты

Теорема

(условиях существования наклонной асимптоты)

Если для функции существуют пределы и , то функция имеет наклонную асимптоту при .

Замечание

Горизонтальная асимптота является частным случаем наклонной при .

Замечание

Если при нахождении горизонтальной асимптоты получается, что , то функция может иметь наклонную асимптоту.

Замечание

Кривая может пересекать свою асимптоту, причем неоднократно.

Пример

Задание. Найти асимптоты графика функции

Решение. Область определения функции:

а) вертикальные асимптоты: прямая - вертикальная асимптота, так как

б) горизонтальные асимптоты: находим предел функции на бесконечности:

то есть, горизонтальных асимптот нет.

в) наклонные асимптоты :

Таким образом, наклонная асимптота: .

Ответ. Вертикальная асимптота - прямая .

Наклонная асимптота - прямая .

Читать дальше: исследование функции и построение ее графика.