Основные теоремы о непрерывности функций.
Непрерывность элементарных функций

Теорема

Пусть заданы две функции и , непрерывные на некотором множестве . Сумма, произведение и частное (при условии, что ) является также непрерывной функцией на рассматриваемом множестве.

Пусть функция задана на множестве , а - множество значений этой функции. Пусть на множестве задана функция , которая называется композицией функций (или сложной функцией) .

Теорема

Пусть функция непрерывна в точке , а функция непрерывна в точке . Тогда композиция этих функций непрерывна в точке .

Теорема

Если функция является непрерывной и строго монотонной на отрезке , которые лежит на оси абсцисс, то и обратная функция также непрерывна и монотонна на некотором отрезке оси ординат.

Теорема

Каждая элементарная функция, заданная в окрестности некоторой точки, непрерывна в этой точке.

Читать первую тему - понятие числовой последовательности, раздела пределы.