Угол между векторами

Пусть заданы два произвольных ненулевых вектора и . Приведем их к общему началу, для этого отложим от некоторой точки векторы и , равные соответственно заданным векторам и (рис. 1).

Определение

Углом между векторами и называется угол .

Угол между сонаправленными векторами равен 0°, а между противоположно направленными - 180°.

Определение

Два вектора называются перпендикулярными или ортогональными, если угол между ними равен 90°.

Угол между двумя векторами , заданными своими координатами, вычисляется по формуле:

Косинус угла между векторами

Пример

Задание. Известно, что скалярное произведение двух векторов , а их длины . Найти угол между векторами и .

Решение. Косинус искомого угла:

Пример

Задание. Найти угол между векторами и

Решение. Косинус искомого угла:

Читать дальше: разложение вектора по ортам координатных осей.