Геометрическая интерпретация комплексного числа

Комплексные числа изображаются на так называемой комплексной плоскости. Ось, соответствующая в прямоугольной декартовой системе координат оси абсцисс, называется действительной осью, а оси ординат - мнимой осью (рис. 1).

Комплексному числу будет однозначно соответствовать на комплексной плоскости точка : (рис. 2). То есть на действительной оси откладывается действительная часть комплексного числа, а на мнимой - мнимая.

Например. На рисунке 3 на комплексной плоскости изображены числа , и .

Модуль комплексного числа

Комплексное число также можно изображать радиус-вектором (рис. 2). Длина радиус-вектора, изображающего комплексное число , называется модулем этого комплексного числа.

Модуль любого ненулевого комплексного числа есть положительное число. Модули комплексно сопряженных чисел равны. Модуль произведения/частного двух комплексных чисел равен произведению/частному модулей каждого из чисел.

Модуль вычисляется по формуле:

Модуль комплексного числа, формула и способ вычисления

То есть модуль есть сумма квадратов действительной и мнимой частей заданного числа.

Пример

Задание. Найти модуль комплексного числа

Решение. Так как , , то искомое значение

Ответ.

Замечание

Иногда еще модуль комплексного числа обозначается как или .

Аргумент комплексного числа

Угол между положительным направлением действительной оси и радиус-вектора , соответствующим комплексному числу , называется аргументом этого числа и обозначается .

Аргумент комплексного числа связан с его действительной и мнимой частями соотношениями:

На практике для вычисления аргумента комплексного числа обычно пользуются формулой:

Пример

Задание. Найти аргумент комплексного числа

Решение. Так как , то в выше приведенной формуле будем рассматривать вторую строку, то есть

Ответ.

Аргумент действительного положительного числа равен , действительного отрицательного - или . Чисто мнимые числа с положительной мнимой частью имеют аргумент равный , с отрицательной мнимой частью - .

У комплексно сопряженных чисел аргументы отличаются знаком (рис. 3).


Читать дальше: комплексно сопряженные числа.