Сложение дробей

Сложение дробей с одинаковыми знаменателями

Определение

Суммой двух дробей с одинаковыми знаменателями называется дробь, числитель которой равен сумме числителей исходных дробей, а знаменатель - знаменателю дробей, то есть

Чтобы сложить две дроби с одинаковым знаменателем, надо сложить их числители и результат записать в числитель, а знаменатель оставить без изменения.

Пример

Задание. Найти сумму дробей    и   

Решение.   

Ответ.   

Если в результате сложения получается дробь, числитель и знаменатель которой можно сократить, то для конечного результата выполняем и сокращение дроби.

Пример

Задание. Найти сумму дробей    и   

Решение. Складываются дроби с одинаковым знаменателем, поэтому просто складываем числитель, а знаменатель оставляем исходный:

Полученная дробь является неправильной, у которой числитель равен знаменателю, и такая дробь равна единице, то есть

Ответ.   

Сложение дробей с разными знаменателями

Определение

Чтобы сложить дроби с разными знаменателями, вначале надо привести их к общему знаменателю, а далее складывать как дроби с общим знаменателем.

Пример

Задание. Сложить дроби    и   

Решение. Так как дроби с разными знаменателями, то вначале приведем их к наименьшему общему знаменателю. Для этого найдем НОК чисел 3 и 8:

НОК (3, 8) = 24

Дополнительные множители к каждой из дробей соответственно:

то есть

Ответ.   

Замечание. После первого знака равенства справа вверху у каждой дроби указан дополнительный множитель к ней.

Сложение смешанных дробей

Определение

Чтобы сложить смешанные дроби, надо отдельно найти сумму целых частей и отдельно сумму дробных частей.

Пример

Задание. Вычислить сумму дробей    и   

Решение. В данном случае складываем отдельно целые и дробные части:

Так как знаменатели дробных частей разные, то приводим дроби к общему знаменателю, который равен 10, так как НОК знаменателей 5 и 10. Соответственно дополнительные множители, как частные общего знаменателя и знаменателей дробей, равны 2 и 1:

Так как дробная часть представляет собой неправильную дробь, то выделяем целую часть:

Ответ.   

Читать следующую тему: вычитание дробей.