Приведение дробей к общему знаменателю

Определение

Приведение дробей к общему знаменателю означает выразить дроби в одинаковых частях единицы без изменения величины дроби.

Обычно дроби приводят к наименьшему общему знаменателю.

Чтобы привести дробь к наименьшему общему знаменателю, необходимо:

  1. сократить дроби;
  2. найти наименьшее общее кратное (НОК) всех знаменателей;
  3. для каждой дроби вычисляется дополнительный множитель как частное от деления НОК на знаменатель дроби;
  4. числитель и знаменатель дроби умножают на соответствующий дополнительный множитель.
Определение

Наименьшее общее кратное нескольких чисел - это наименьшее из всех чисел, которое делится нацело на каждое из данных чисел.

Пример

Задание. Привести дроби    и    к общему знаменателю.

Решение. Каждая из дробей является несократимой, поэтому переходим к нахождению НОК знаменателей дробей - чисел 4 и 14. Для этого воспользуемся каноническими разложениями на простые множители:

Получаем, что . Для нахождения НОК знаменателей из их канонических разложений выписываем все простые множители, которые входят хотя бы в одно из них. Из одинаковых простых множителей выбираем тот, который стоит в наибольшей степени. То есть в нашем случае имеем:

НОК (4, 14)

Вычисляем дополнительные множители к каждой из дробей, для этого найденный НОК делим соответственно на 4 и 14:

Далее числитель и знаменатель первой дроби умножаем на дополнительный множитель, равный 7, а второй дроби - на 2, будем иметь:

и

Полученные дроби    и    уже имеют общий знаменатель, равный 28.

Ответ. Дроби    и    с общим знаменателем:

Читать следующую тему: сложение дробей.