Задание. |
Решить неравенство |
Решение. |
По определению логарифма, область допустимых значений: Решение данного неравенства найдем с помощью метода интервалов, для этого левую часть разложим на множители. Решим квадратное уравнение . Можете проверить решение и ответ в нашем сервисе - решение квадратных уравнений. Таким образом, получили корни . Значит, левую часть неравенства можно представить в виде: Отметим нули каждого множителя (а это будут значения ) на числовой прямой и определим знаки неравенства в полученных интервалах: Учитывая знак неравенства, определим ОДЗ: ОДЗ определили, теперь приступим к решению исходного логарифмического неравенства: Представим правую часть неравенства как логарифм по основанию 2: Перейдем от неравенства относительно логарифмов к неравенству для подлогарифмических функций: так как основание логарифма больше единицы ( 2 > 1 ), то знак неравенства не изменится (Подробнее читайте в статье: логарифмические неравенства): Приравняем к нулю левую часть неравенства и решим полученное квадратное уравнение . Таким образом, получили корни . Отметим точки на числовой оси и определим знаки неравенства в полученных интервалах. Учитывая, что нас интересуют все значения , при которых данное неравенство принимает положительные значения, то получаем следующие интервалы: . Это ответ, так как данные интервалы полностью принадлежат ОДЗ. |
Ответ. |
|
Примеры решения задач - Логарифмы
Интеграл функции является основным понятием интегрального исчисления. Интеграл широко используется при решении целого ряда задач по математике, физике и в других науках. Именно поэтому мы собрали на сайте более 100 примеров решения интегралов и постоянно добавляем новые! Список тем находится в правом меню.
Перед изучением примеров вычисления интегралов советуем вам прочитать теоретический материал по теме: определения, свойства и таблицу интегралов, методы их вычисления и другой материал по интегралам.
Программа не может допустить ошибки, у нее не может быть опечатки и ее почерк Вы всегда поймете. С нами решение задач по математике - это просто. Используйте наш сервис и решение задач по математике, физике, геометрии и теории вероятности не составит для Вас больше труда.
Для того, чтобы получить решение Вам надо только ввести данные и наши программы, самостоятельно, без участия людей, всего за пару секунд выдадут Вам точный, исчерпывающий ответ. Большинство программ вместе с ответом выдают подробное решение, в результате Вам надо только переписать решение в тетрадь и затем получить свою хорошую оценку. К программа прилагаются примеры решения задач, так что еще не введя данные, Вы будете знать, как будет выглядеть ответ. Для тренировки и усвоения материала используйте раздел примеры решения задач.
Все онлайн калькуляторы на сайте абсолютно бесплатны. Пользуйтесь на здоровье!