Содержание:

Определение

Система уравнений - это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.

Решением системы уравнений называется упорядоченный набор чисел - значений неизвестных, при подстановке которых каждое уравнение системы обращается в верное равенство.

Определение

Системой линейных алгебраических уравнений (СЛАУ) называется система вида:

$$\left\{\begin{array}{l} a_{11} \cdot x_{1}+a_{12} \cdot x_{2}+\ldots+a_{1 n} \cdot x_{n}=b_{1} \\ a_{21} \cdot x_{1}+a_{22} \cdot x_{2}+\ldots+a_{2 n} \cdot x_{n}=b_{2} \\ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \\ a_{m 1} \cdot x_{1}+a_{m 2} \cdot x_{2}+\ldots+a_{m n} \cdot x_{n}=b_{m} \end{array}\right.$$

Упорядоченный набор значений $\left\{x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right\}$ называется решением системы, если при подстановке в уравнения все уравнения превращаются в тождество.

История систем уравнений

Задачи, соответствующие современным задачам на составление и решение систем уравнений с несколькими неизвестными, встречаются еще в вавилонских и египетских рукописях II века до н.э., а также в трудах древнегреческих, индийских и китайских мудрецов. В китайском трактате "Математика в девяти книгах" словесно изложены правила решения систем уравнений, были замечены некоторые закономерности при решении.

Основные понятия и применения

Система может состоять из алгебраических уравнений, линейных алгебраических уравнений, нелинейных уравнений, дифференциальных уравнений.

Методы решения системы уравнений зависят от типа системы. Например, решения систем линейных алгебраических уравнений хорошо известны ( метод Крамера, метод Гаусса, матричный метод, метод итераций и т.д.). Для нелинейных же систем общего аналитического решения не найдено, они решаются разного рода численными методами. Аналогично дело обстоит и с системами дифференциальных уравнений.

Системы линейных уравнений широко используются в задачах экономики, физики, химии и других науках.

Решение систем линейных алгебраических уравнений - одна из основных задач вычислительной линейной алгебры. Хотя задача решения именно системы линейных уравнений сравнительно редко представляет самостоятельный интерес для прикладных задач, но от умения эффективно решать данные системы часто зависит сама возможность математического моделирования самых разнообразных процессов с применением ЭВМ. Значительная часть численных методов решения различных (в особенности - нелинейных) задач включает в себя решение систем линейных уравнений как элементарный шаг соответствующего алгоритма.


Читать дальше: системы линейных алгебраических уравнений: основные понятия, виды.