Производная функции является основным понятием дифференциального исчисления. Она характеризует скорость изменения функции в указанной точке. Производная широко используется при решении целого ряда задач по математике, физике и другим наукам, в особенности при изучении скорости различного рода процессов. Именно поэтому мы собрали на сайте более 200 примеров решения производных и постоянно добавляем новые! Список тем находится в правом меню.

Перед изучением примеров вычисления производных советуем изучить теоретический материал по теме: прочитать определения, правила дифференцирования, таблицу производных и другой материал по производным.


Таблица производных и правила дифференцирования

Основные ссылки - таблица производных, правила дифференцирования и примеры решений (10 шт).

Пример

Задание. Найти производную функции

Решение. Так как производная суммы равна сумме производных, то

Воспользуемся формулами для производных показательной и обратной тригонометрической функций:

Ответ.

Больше примеров решений


Производные сложных функций

Основные ссылки - теоретический материал и примеры решений (10 шт).

Пример

Задание.Найти производную функции

Решение. По правилу дифференцирования сложной функции:

В свою очередь производная также берется по правилу дифференцирования сложной функции:

Ответ.

Больше примеров решений


Применение дифференциала в приближенных вычислениях

Основные ссылки - теоретический материал и примеры решений (10 шт).

Пример

Задание. Вычислить приближенно , заменяя приращение функции ее дифференциалом.

Решение. Рассмотрим функцию . Необходимо вычислить ее значение в точке . Представим данное значение в виде следующей суммы:

Величины и выбираются так, чтобы в точке можно было бы достаточно легко вычислить значение функции и ее производной, а было бы достаточно малой величиной. С учетом этого, делаем вывод, что , то есть , .

Вычислим значение функции в точке :

Далее продифференцируем рассматриваемую функцию и найдем значение :

Тогда

Итак,

Ответ.

Больше примеров решений


Геометрический смысл производной

Основные ссылки - теоретический материал и примеры решений (10 шт).

Пример

Задание. Найти тангенс угла наклона касательной к графику функции в точке .

Решение. Из геометрического смысла производной получаем, что производная функции , вычисленная при заданном значении , равна тангенсу угла, образованного положительным направлением оси и положительным направлением касательной, проведенной к графику этой функции в точке с абсциссой , то есть

Найдем производную от заданной функции:

в точке имеем:

Тогда окончательно получим, что

Ответ.

Больше примеров решений


Механический смысл производной

Основные ссылки - теоретический материал и примеры решений (10 шт).

Пример

Задание. Точка движется по закону . Чему равна скорость в момент времени ?

Решение. Найдем скорость точки как первую производную от перемещения:

В момент времени скорость равна

Ответ.

Больше примеров решений


Уравнение касательной, нормали и угол между прямыми

Основные ссылки - теоретический материал и примеры решений (10 шт).

Пример

Задание. Записать уравнение касательной к графику функции в точке

Решение. Найдем значение функции в заданной точке:

Найдем производную заданной функции по правилу дифференцирования произведения:

Вычислим её значение в заданной точке

Используя формулу

запишем уравнение касательной:

Ответ. Уравнение касательной:

Больше примеров решений


Производные высших порядков

Основные ссылки - теоретический материал и примеры решений (10 шт).

Пример

Задание. Найти производную второго порядка от функции

Решение. Находим первую производную как производную сложной функции:

Вторую производную находим как от произведения, предварительно вынеся по правилам дифференцирования коэффициент 3 за знак производной. Также будем учитывать, что первый множитель - - есть сложной функцией:

Ответ.

Больше примеров решений


Механическое смысл второй производной

Основные ссылки - теоретический материал и примеры решений (10 шт).

Пример

Задание. Уравнение движения материальной точки вдоль оси имеет вид (м). Найти ускорение точки в момент времени c.

Решение. Ускорение заданной точки найдем, взяв вторую производную от перемещения по времени:

Первая производная

(м/с)

вторая производная

(м/с2)

В момент времени c

(м/с2)

Ответ. (м/с2)

Больше примеров решений


Дифференциалы высших порядков

Основные ссылки - теоретический материал и примеры решений (10 шт).

Пример

Задание. Найти дифференциал третьего порядка функции

Решение. По формуле

Найдем третью производную заданной функции:

Тогда

Ответ.

Больше примеров решений


Производная функции, заданной неявно

Основные ссылки - теоретический материал и примеры решений (10 шт).

Пример

Задание. Найти производную неявно заданной функции

Решение. Продифференцируем обе части данного выражения по , учитывая, что функция от и производная от неё берется как от сложной функции.

Выразим из этого равенства

Ответ.

Больше примеров решений


Производная функции, заданной параметрически

Основные ссылки - теоретический материал и примеры решений (10 шт).

Пример

Задание. Найти производную от функции заданной параметрически

Решение. Найдем производные и

Подставляя найденные значения и в формулу

получим

Ответ.

Больше примеров решений


Логарифмическое дифференцирование

Основные ссылки - теоретический материал и примеры решений (10 шт).

Пример

Задание. Найти производную функции

Решение. Применим логарифмическое дифференцирование:

Тогда, продифференцировав левую и правую часть, будем иметь:

Отсюда получаем, что

Ответ.

Больше примеров решений


Формулы Маклорена и Тейлора

Основные ссылки - теоретический материал и примеры решений (10 шт).

Пример

Задание. Разложить в ряд Тейлора функцию в точке .

Решение. Найдем производные:

Итак, , , . Значение функции в точке

Таким образом,

Ответ.

Больше примеров решений