Матрицы: основные определения и понятия

Определение

Матрицей размера называется прямоугольная таблица, содержащая чисел, состоящая из строк и столбцов.

Обозначение

Таблица берется либо в круглые скобки, либо окружается двумя параллельными вертикальными прямыми.

Пример

Если матрица содержит строк и столбцов, то матрица называется матрицей размера или -матрицей. Размер матрицы указывается справа внизу возле ее имени, либо таблицы с обозначением элементов.

Пример

Элементы матрицы

Элементы матрицы обозначаются , где - номер строки, в которой находится элемент, а - номер столбца.

Пример

Задание. Чему равен элемент матрицы ?

Решение. Находим элемент, который стоит на пересечении второй строки и третьего столбца:

Таким образом, .

Ответ.

Определение

Строка матрицы называется нулевой, если все ее элементы равны нулю. Если хотя бы один из элементов строки не равен нулю, то строка называется ненулевой.

Замечание. Аналогичное определение и для нулевого и ненулевого столбцов матрицы.

Пример

В матрице первая строка является нулевой (любой элемент этой строки равен нулю); вторая строка ненулевая, так как элемент .

Диагонали

Определение

Главной диагональю матрицы называется диагональ, проведённая из левого верхнего угла матрицы в правый нижний.

Побочной диагональю матрицы называется диагональ, проведённая из левого нижнего угла матрицы в правый верхний.

Пример

Главная диагональ матрицы : 1 и 6 - элементы главной диагонали.

Побочная диагональ матрицы : 3 и 4 - элементы побочной диагонали.

Для матрицы элементы 1, 2, -1 образуют главную диагональ; а элементы 3, 2, 2 - побочную.

Читать дальше: виды матриц.