Примеры решения СЛАУ

Методы решения систем линейных уравнений широко используются в задачах математики, экономики, физики, химии и других науках. На практике, они позволяют не делать лишних действий, а записать систему уравнений в более компактной форме и сократить время выполнения задач. Поэтому, будущим специалистам очень важно понять основные методы решения и научиться выбирать оптимальный.

Перед изучением примеров решения задач советуем изучить теоретический материал по СЛАУ, прочитать все теоремы и методы решения. Список тем находится в правом меню.

СЛАУ: основные понятия, виды

Теоретический материал по теме - СЛАУ: основные понятия, виды.

Пример

Задание. Проверить, является ли набор решением системы

Решение. Подставляем в каждое из уравнений системы и :

Так как в результате подстановки получили верные равенства, то делаем вывод, что заданный набор является решением указанной СЛАУ.

Ответ. Набор является решением системы

Пример

Задание. Систему записать в матричной форме и выписать все матрицы, которые ей соответствуют.

Решение. Заданную СЛАУ записываем в матричной форме , где матрица системы:

вектор-столбец неизвестных:

вектор-столбец свободных коэффициентов:

то есть, запись СЛАУ в матричной форме:

Пример

Задание. Записать матрицу и расширенную матрицу системы

Решение. Матрица системы , тогда расширенная матрица

Критерий совместности системы

Теоретический материал по теме - критерий совместности системы, теорема Кронекера-Капелли.

Пример

Задание. При каких значениях система будет совместной?

Решение. Ранг матрицы равен количеству ненулевых строк после приведения этой матрицы к ступенчатому виду. Поэтому записываем расширенную матрицу системы (слева от вертикальной черты находится матрица системы ):

и с помощью элементарных преобразований приводим ее к ступенчатому виду. Для этого вначале от второй строки отнимаем две вторых строки, а от третьей вторую, в результате получаем:

Третью строку складываем с первой:

и меняем первую и вторую строки матрицы местами

Матрица приведена к ступенчатому виду. Получаем, что , . Таким образом, при система совместна, а при - несовместна.

Квадратные СЛАУ. Матричный метод решения

Теоретический материал по теме - матричный метод решения.

Пример

Задание. Найти решение СЛАУ матричным методом.

Решение. Выпишем матрицу системы и матрицу правых частей . Найдем обратную матрицу для матрицы системы. Для матрицы второго порядка обратную можно находить по следующему алгоритму: 1) матрица должна быть невырождена, то есть ее определитель не должен равняться нулю: ; 2) элементы, стоящие на главной диагонали меняем местами, а у элементов побочной диагонали меняем знак на противоположный и делим полученные элементы на определитель матрицы. Итак, получаем, что

Тогда

Две матрицы одного размера равны, если равны их соответствующие элементы, то есть в итоге имеем, что ,

Ответ. ,

Пример

Задание. Решить с помощью обратной матрицы систему

Решение. Запишем данную систему в матричной форме:

,

где - матрица системы, - столбец неизвестных, - столбец правых частей. Тогда

Найдем обратную матрицу к матрице с помощью союзной матрицы:

Здесь - определитель матрицы ; матрица - союзная матрица, она получена из исходной матрицы заменой ее элементов их алгебраическими дополнениями. Найдем , для этого вычислим алгебраические дополнения к элементам матрицы :

  

  

  

  

Таким образом,

Определитель матрицы

А тогда

Отсюда искомая матрица

Ответ.

Метод / Теорема Крамера

Теоретический материал по теме - метод Крамера.

Пример

Задание. Найти решение СЛАУ при помощи метода Крамера.

Решение. Вычисляем определитель матрицы системы:

Так как , то по теореме Крамера система совместна и имеет единственное решение. вычислим вспомогательные определители. Определитель получим из определителя заменой его первого столбца столбцом свободных коэффициентов. Будем иметь:

Аналогично, определитель получается из определителя матрицы системы заменой второго столбца столбцом свободных коэффициентов:

Тогда получаем, что

Ответ. ,

Пример

Задание. При помощи формул Крамера найти решение системы

Решение. Вычисляем определитель матрицы системы:

Так как определитель матрицы системы неравен нулю, то по теореме Крамера система совместна и имеет единственное решение. Для его нахождения вычислим следующие определители:

Таким образом,

     

Ответ.

Метод Гаусса. Метод последовательного исключения неизвестных

Теоретический материал по теме - метод Гаусса.

Пример

Задание. Решить СЛАУ методом Гаусса.

Решение. Выпишем расширенную матрицу системы и при помощи элементарных преобразований над ее строками приведем эту матрицу к ступенчатому виду (прямой ход) и далее выполним обратный ход метода Гаусса (сделаем нули выше главной диагонали). Вначале поменяем первую и вторую строку, чтобы элемент равнялся 1 (это мы делаем для упрощения вычислений):

Далее делаем нули под главной диагональю в первом столбце. Для этого от второй строки отнимаем две первых, от третьей - три первых:

Все элементы третьей строки делим на два (или, что тоже самое, умножаем на ):

Далее делаем нули во втором столбце под главной диагональю, для удобства вычислений поменяем местами вторую и третью строки, чтобы диагональный элемент равнялся 1:

От третьей строки отнимаем вторую, умноженную на 3:

Умножив третью строку на , получаем:

Проведем теперь обратный ход метода Гаусса (метод Гассу-Жордана), то есть сделаем нули над главной диагональю. Начнем с элементов третьего столбца. Надо обнулить элемент , для этого от второй строки отнимем третью:

Далее обнуляем недиагональные элементы второго столбца, к первой строке прибавляем вторую:

Полученной матрице соответствует система

   или   

Ответ.

Однородные СЛАУ. Фундаментальная система решений

Теоретический материал по теме - однородные СЛАУ.

Пример

Задание. Выяснить, имеет ли однородная СЛАУ ненулевые решения.

Решение. Вычислим определитель матрицы системы:

Так как определитель не равен нулю, то система имеет только нулевое решение

Ответ. Система имеет только нулевое решение.

Пример

Задание. Найти общее решение и ФСР однородной системы

Решение. Приведем систему к ступенчатому виду с помощью метода Гаусса. Для этого записываем матрицу системы (в данном случае, так как система однородная, то ее правые части равны нулю, в этом случае столбец свободных коэффициентов можно не выписывать, так как при любых элементарных преобразованиях в правых частях будут получаться нули):

с помощью элементарных преобразований приводим данную матрицу к ступенчатому виду. От второй строки отнимаем первую, от третьей - четыре первых, от четвертой - две первых:

Обнуляем элементы второго столбца, стоящие под главной диагональю, для этого от третьей строки отнимаем три вторых, к четвертой прибавляем вторую:

От четвертой строки отнимем третьей и третью строку умножим на :

Нулевые строки можно далее не рассматривать, тогда получаем, что

Далее делаем нули над главной диагональю, для этого от первой строки отнимаем третью, а ко второй строке прибавляем третью:

то есть получаем систему, соответствующую данной матрице:

Или, выразив одни переменные через другие, будем иметь:

Здесь - независимые (или свободные) переменные (это те переменные, через которые мы выражаем остальные переменные), - зависимые (связанные) переменные (то есть те, которые выражаются через свободные). Количество свободных переменных равно разности общего количества переменных (в рассматриваемом примере , так как система зависит от пяти переменных) и ранга матрицы (в этом случае получили, что - количество ненулевых строк после приведения матрицы к ступенчатому виду):

Так как ранг матрицы , а количество неизвестных системы , то тогда количество решений в ФСР (для проверки, это число должно равняться количеству свободных переменных).

Для нахождения ФСР составляем таблицу, количество столбцов которой соответствует количеству неизвестных (то есть для рассматриваемого примера равно 5), а количество строк равно количеству решений ФСР (то есть имеем две строки). В заголовке таблицы выписываются переменные, свободные переменные отмечаются стрелкой. Далее свободным переменным придаются любые, одновременно не равные нулю значений и из зависимости между свободными и связанными переменными находятся значения остальных переменных. Для рассматриваемой задачи эта зависимость имеет вид:

Тогда придавая в первом случае, например, независимым переменным значения , получаем, что . Полученные значения записываем в первую строку таблицы. Аналогично, беря , , будем иметь, что , что и определяет второе решение ФСР. В итоге получаем следующую таблицу:

Эти две строчки и есть фундаментальным решением заданной однородной СЛАУ. Частное решение системы:

Общее решение является линейной комбинацией частных решений:

где коэффициенты не равны нулю одновременно. Или запишем общее решение в таком виде:

  

Придавая константам определенные значения и подставляя их в общее решение, можно будет находить частные решения однородной СЛАУ.

Читать первую тему - СЛАУ: основные понятия, виды, раздела системы линейных алгебраических уравнений.