Содержание:

Умножение и деление десятичной дроби на 10, 100, 1000 и т.д.

Чтобы умножить десятичную дробь на 10, 10, 1000 и т.д. надо перенести десятичную запятую на столько знаков вправо, сколько нулей содержит число 10, 100, 1000 и т.д.

Замечание

Если десятичных знаков дроби меньше, чем количество нулей у единицы, то на пустые места записывают нули.

Пример

Задание. Выполнить умножение: 1) $2,34 \cdot 10$ ; 2) $2,34 \cdot 100$ ; 3) $2,34 \cdot 1000$

Решение. 1) Так заданная дробь умножается на 10 (один нуль), то десятичную запятую переносим на один знак вправо:

$$2,34 \cdot 10=23,4$$

2) Число умножается на 100, поэтому десятичную запятую переносим на два знака вправо:

$$2,34 \cdot 100=234$$

3) В данном случае запятую у десятичной дроби надо перенести на три знака вправо, и так как дробь содержит только два десятичных знака, то справа дописываем один нуль:

$$2,34 \cdot 1000=2340$$

Чтобы поделить десятичную дробь на 10, 100, 1000 и т.д., надо перенести десятичную запятую на один, два, три и т.д. знака влево соответственно.

Замечание

Если для перенесения запятой в дроби не хватает знаков, их число дополняют соответствующим количеством нулей слева.

Слишком сложно?

Действия над десятичными дробями не по зубам? Тебе ответит эксперт через 10 минут!

Опиши задание

Пример

Задание. Выполнить действия: 1) $23,4 : 10$ ; 2) $23,4 : 100$ ; 3) $23,4 : 1000$

Решение. 1) Переносим запятую на один знак влево, так как делим на 10 и это число содержит один нуль. Будем иметь:

$$23,4 : 10=2,34$$

2) В этом случае при делении на 100 переносим запятую на два знака влево:

$$23,4 : 100=0,234$$

3) Запятая переносится на три знака влево, недостающий один знаки дополняем одним нулем. Получаем:

$$23,4 : 1000=0,0234$$

Сложение и вычитание десятичных дробей

При сложении (вычитании) десятичных дробей поступают следующим образом:

  1. При необходимости уравнивают количество знаков после запятой, добавляя справа нули к соответствующей дроби, что, согласно основному свойству десятичных дробей, не влияет на величину дроби.

    Например. Если надо, например, сложить дроби $0,123$ и $4,56$ , то справа ко второй дроби надо дописать один нуль, чтобы десятичных знаков стало три: $4,560$

  2. Записывают дроби так, чтобы их запятые находились друг под другом (или, что то же самое, разряд под разрядом).

    Например. Правильная запись:

    Неправильная запись:

        или    

  3. Сложить/вычесть, не обращая внимания на запятую, как целые числа. Складываем по одной цифре, начиная с самого крайнего правого разряда и двигаясь влево к следующему
  4. Поставить запятую в сумме/разности под запятыми, складываемых/вычитаемых дробей.

Пример

Задание. Найти сумму дробей $32,45$ и $4,274$

Решение. Распишем решение пошагово. Итак, нам надо найти сумму

$$32,45+4,274$$

Действия будем производить в столбик, то есть запишем сумму следующим образом (помним, что для десятичных дробей при выполнении сложения/вычитания десятичные запятые дробей должны находиться на одной вертикальной линии):

Вначале к первой дроби справа дописываем нуль, чтобы уравнять количество десятичных знаков:

Складываем по одной цифре (знаку, разряду) справа налево. Результат сложения записываем под соответствующими слагаемыми под чертой. На первом этапе складываем 0 и 4: :

Теперь складываем 5 и 7: , в результате получилось число большее 10, а поэтому под чертой записываем только последнюю цифру полученного числа, то есть 2, а над соседним левым разрядом - 4 - ставим оставшиеся цифры, то есть 1. (Обычно при решении говорят так: "два пишем, один в уме"):

Единица над 4 означает, что после того как будет выполнено сложение следующего разряда: , к полученной сумме надо будет прибавить 1, которую мы "держим в уме".

Итак, складываем далее, к 4 прибавляем 2: и прибавляем "красную" единицу: . То есть под чертой под десятыми пишем 7:

Под десятичными запятыми слагаемых, ставим запятую суммы:

И продолжаем сложение далее по выше описанному алгоритму: :

И, снеся 3 (под ней во втором слагаемом нет соответствующей цифры), окончательно будем иметь:

Таким образом, $32,45+4,274=36,724$

Ответ. $32,45+4,274=36,724$

Пример

Задание. Вычислить $4,312-0,91$

Решение. Выполним вычитание в столбик, для этого запишем заданные десятичные дроби одна под другой так, чтобы их десятичные запятые находились на одной вертикали:

Для того, чтобы десятичных знаков было равное число, допишем ко второй дроби справа нуль:

Вычитание столбиком начинаем с самой правой цифры: . результат записываем под чертой:

Далее от 1 отнимаем 1:

Теперь нам нужно вычесть из тройки девять. Это сделать нельзя, так как #3 < 9# . Поэтому "займем десяток" в соседнем слева от 3 разряде - у 4. Это действие отметим стрелкой сверху. Занятый десяток прибавим к 3: $3+10=13$ . Соответственно 4 уменьшилась на 1: $4-1=3$ . Итак, далее из 13 вычтем 9: $3-9=4$ :

Далее ставим запятую:

Далее от 3 (то, что осталось от 4, после того, как мы забрали нее одну единицу) отнимем 0:

Итак, в итоге получаем, что $4,312-0,91=3,402$

Ответ. $4,312-0,91=3,402$

Умножение десятичных дробей

Чтобы умножить одно десятичное число на другое, необходимо перемножить их как целые числа, не обращая внимания на запятые, а затем в полученном произведении отделить справа столько десятичных знаков, сколько их было вместе в обоих сомножителях.

Пример

Задание. Вычислить $2,34 \cdot 4,12$

Решение. Умножаем заданные числа, не обращая внимания на запятые:

$234 \cdot 412 = 96408$

Так как первый множитель содержит два десятичных знака и второй также, то у результата отделяем $2+2=4$ знака справа:

$2,34 \cdot 4,12 = 9,6408$

Ответ. $2,34 \cdot 4,12 = 9,6408$

Деление десятичных дробей

Для деления десятичной дроби на натуральное число придерживаются следующего алгоритма:

  1. Делим десятичную дробь на натуральное число по правилам деления в столбик, не обращая внимание на запятую.
  2. Ставим в полученном частном запятую, когда заканчивается деление целой части делимого. Если целая часть делимого меньше делителя, то в частном ставим 0 целых.

Пример

Задание. Выполнить деление $1,176:21$

Решение. Так как целая часть десятичной дроби, которая равна 1, меньше, чем делитель, который равен 21, то в частном в целой части ставим 0. Далее делим как целые числа:

Таким образом, $1,176:21 = 0,056$

Ответ. $1,176:21 = 0,056$

Для того, чтобы поделить число на десятичную дробь, необходимо делитель превратить в целое число, умножив его на 10, 100, 1000 и т.д. раз соответственно. Чтобы величина дроби не изменилась, на это же число (10, 100, 1000 и т.д.) надо умножить и делимое, после чего деление сведется к делению на целое число, алгоритм которого описан выше.

Пример

Задание. Поделить дробь $1,23$ на дробь $0,3$

Решение. Так как делитель $0,3$ не является целым числом, то его надо таковым сделать. Так как у данного числа один знак после запятой, тогда для перемещения десятичной запятой вправо на один знак его (число) надо умножить на 10: $0,3 \cdot 10=3$ . Чтобы результат не изменился, надо и делимое $0,3$ умножить на 10: $1,23 \cdot 10=12,3$

Таким образом, пришли к равносильному делению $12,3:3$ . Деление произведем в столбик:

Ответ. $1,23:0,3 = 4,1$

Читать следующую тему: периодические десятичные дроби.