Теорема умножения вероятностей

Формулировка теоремы умножения вероятностей

Теорема

Вероятность произведения двух событий равна произведению вероятностей одного из них на условную вероятность другого, вычисленную при условии, что первое имело место.

Событие называется независимым от события , если вероятность события не зависит от того, произошло событие или нет. Событие называется зависимым от события , если вероятность события меняется в зависимости от того, произошло событие или нет.

Вероятность события , вычисленная при условии, что имело место другое событие , называется условной вероятностью события и обозначается .

Условие независимости события от события можно записать в виде:

а условие зависимости - в виде:

Следствие 1. Если событие не зависит от события , то и событие не зависит от события .

Следствие 2. Вероятность произведения двух независимых событий равна произведению вероятностей этих событий:

Теорема умножения вероятностей может быть обобщена на случай произвольного числа событий. В общем виде она формулируется так.

Вероятность произведения нескольких событий равна произведению вероятностей этих событий, причем вероятность каждого следующего по порядку события вычисляется при условии, что все предыдущие имели место:

В случае независимых событий теорема упрощается и принимает вид:

то есть вероятность произведения независимых событий равна произведению вероятностей этих событий:

Примеры решения задач

Пример

Задание. В урне 2 белых и 3 черных шара. Из урны вынимают подряд два шара и назад не возвращаются. Найти вероятность того, что оба шара белые.

Решение. Пусть событие - появление двух белых шаров. Это событие представляет собой произведение двух событий:

где событие - появление белого шара при первом вынимании, - появление белого шара при втором вынимании. Тогда по теореме умножения вероятностей

Ответ.

Пример

Задание. В урне 2 белых и 3 черных шара. Из урны вынимают подряд два шара. После первого вынимания шар возвращается в урну, и шары в урне перемешиваются. Найти вероятность того, что оба шара белые.

Решение. В данном случае события и независимы, а тогда искомая вероятность

Ответ.