Производные сложных функций

Пример

Задание. Найти производную сложной функции $y=\sqrt{x^{2}-3 x+17}$

Решение. Используем правила дифференцирования и таблицу производных сложных функций:

$y^{\prime}=\left(\sqrt{x^{2}-3 x+17}\right)^{\prime}=\frac{1}{2 \sqrt{x^{2}-3 x+17}} \cdot\left(x^{2}-3 x+17\right)^{\prime}=$

$=\frac{1}{2 \sqrt{x^{2}-3 x+17}} \cdot\left[\left(x^{2}\right)^{\prime}-(3 x)^{\prime}+(17)^{\prime}\right]=$

$=\frac{1}{2 \sqrt{x^{2}-3 x+17}} \cdot\left[2 x^{2-1}-3 \cdot(x)^{\prime}+0\right]=$

$=\frac{1}{2 \sqrt{x^{2}-3 x+17}} \cdot(2 x-3 \cdot 1)=\frac{2 x-3}{2 \sqrt{x^{2}-3 x+17}}$

Ответ. $y^{\prime}=\frac{2 x-3}{2 \sqrt{x^{2}-3 x+17}}$


Читать дальше: применение дифференциала к приближенным вычислениям.


Warning: file_put_contents(./students_count.txt): failed to open stream: Permission denied in /var/www/webmath-q2ws/data/www/webmath.ru/poleznoe/guide_content_banner.php on line 20
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 458 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!