Слишком сложные наибольшее и наименьшее значение функции, непрерывной на отрезке? Мы поможем!Опишите задание
Наибольшее и наименьшее значение функции, непрерывной на отрезке
Если функция $y=f(x)$ определена и
непрерывна на отрезке
$[a ; b]$ , то она на этом отрезке достигает своих наибольшего
и наименьшего значений. Если свое наибольшее значение $M$
функция $f(x)$ принимает в точке
$x_{0} \in[a ; b]$, то
$M=f\left(x_{0}\right)$ будет локальным максимумом функции
$f(x)$, так как в этом случае существует окрестность точки
$x_{0}$, такая, что
$f(x) \leq f\left(x_{0}\right)$ .
Однако свое наибольшее значение $M$ функция
$f(x)$ может принимать и на концах отрезка
$[a ; b]$ . Поэтому, чтобы найти наибольшее значение
$M$ непрерывной на отрезке
$[a ; b]$ функции
$f(x)$, надо найти все максимумы функции на интервале
$(a ; b)$ и значения
$f(x)$ на концах отрезка
$[a ; b]$, то есть
$f(a)$ и
$f(b)$, и выбрать среди них наибольшее. Вместо исследования
на максимум можно ограничиться нахождением значений функции в критических точках.
Наименьшим значением $m$ непрерывной на отрезке
$[a ; b]$ функции
$f(x)$ будет наименьший минимум среди всех минимумов функции
$f(x)$ на интервале
$(a ; b)$ и значений
$f(a)$ и
$f(b)$.
Пример
Задание. Найти наибольшее и наименьшее значение функции
$y(x)=4 x^{3}-2 x^{2}+4$ на отрезке
$[0 ; 5]$ .