В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов (рис. 1):
Содержание:
- Формула теоремы Пифагора
- Доказательство теоремы Пифагора
- Геометрическая формулировка теоремы Пифагора
- Примеры решения задач
- Историческая справка
Формула теоремы Пифагора
Теорема
$c^{2}=a^{2}+b^{2}$
Доказательство теоремы Пифагора
Пусть треугольник $A B C$ - прямоугольный треугольник с прямым углом $C$ (рис. 2).
Проведём высоту из вершины $C$ на гипотенузу $A B$, основание высоты обозначим как $H$ .
Прямоугольный треугольник $A C H$ подобен треугольнику $A B C$ по двум углам ( $\angle A C B=\angle C H A=90^{\circ}$, $\angle A$ - общий). Аналогично, треугольник $C B H$ подобен $A B C$ .
Введя обозначения
$$B C=a, A C=b, A B=c$$
из подобия треугольников получаем, что
$$\frac{a}{c}=\frac{H B}{a}, \frac{b}{c}=\frac{A H}{b}$$
Отсюда имеем, что
$$a^{2}=c \cdot H B, b^{2}=c \cdot A H$$
Сложив полученные равенства, получаем
$$a^{2}+b^{2}=c \cdot H B+c \cdot A H$$
$$a^{2}+b^{2}=c \cdot(H B+A H)$$
$$a^{2}+b^{2}=c \cdot A B$$
$$a^{2}+b^{2}=c \cdot c$$
$$a^{2}+b^{2}=c^{2}$$
Что и требовалось доказать.
Геометрическая формулировка теоремы Пифагора
Теорема
В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах (рис. 2):
$S=S_{1}+S_{2}$
Примеры решения задач
Пример
Задание. Задан прямоугольный треугольник $A B C$, катеты которого равны 6 см и 8 см. Найти гипотенузу этого треугольника.
Решение. Согласно условию катеты $a=6$ см, $b=8$ см. Тогда, согласно теореме Пифагора, квадрат гипотенузы
$c^{2}=a^{2}+b^{2}=6^{2}+8^{2}=36+64=100$
Отсюда получаем, что искомая гипотенуза
$c=\sqrt{100}=10$ (см)
Ответ. 10 см
Пример
Задание. Найти площадь прямоугольного треугольника, если известно, что один из его катетов на 5 см больше другого, а гипотенуза равна 25 см.
Решение. Пусть $x$ см - длина меньшего катета, тогда $(x+5)$ см - длина большего. Тогда согласно теореме Пифагора имеем:
$$x^{2}+(x+5)^{2}=25^{2}$$
Раскрываем скобки, сводим подобные и решаем полученное квадратное уравнение:
$x^{2}+5 x-300=0$
Согласно теореме Виета, получаем, что
$x_{1}=15$ (см) , $x_{2}=-20$ (см)
Значение $x_{2}$ не удовлетворяет условию задачи, а значит, меньший катет равен 15 см, а больший - 20 см.
Площадь прямоугольного треугольника равна полупроизведению длин его катетов, то есть
$$S=\frac{15 \cdot 20}{2}=15 \cdot 10=150\left(\mathrm{см}^{2}\right)$$
Ответ. $S=150\left(\mathrm{см}^{2}\right)$
Историческая справка
Теорема Пифагора - одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.
В древнекитайской книге "Чжоу би суань цзин" говорится о пифагоровом треугольнике со сторонами 3, 4 и 5. Крупнейший немецкий историк математики Мориц Кантор (1829 - 1920) считает, что равенство $3^{2}+4^{2}=5^{2}$ было известно уже египтянам ещё около 2300 г. до н.э. По мнению ученого, строители строили тогда прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте приводится приближённое вычисление гипотенузы равнобедренного прямоугольного треугольника.
На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.