Задание. |
Найти производную функции |
Решение. |
По свойству дифференцирования частного получаем: Далее пользуясь формулами для производных логарифмической и степенной функции, получим: Для вычисления производной функции использовались правила дифференцирования и таблица производных функций. |
Ответ. |
|
Вы поняли, как решать? Нет?
Другие примеры
- Примеры решения задач с дробями
- Примеры решения задач с интегралами
- Примеры решения задач с логарифмами
- Решение СЛАУ 3-его порядка методом Гаусса, пример № 5

Рассчитайте цену решения ваших задач

