Содержание:

Определение

Скалярным произведением двух ненулевых векторов $\overline{a}$ и $\overline{b}$ называется число, равное произведению длин этих векторов на косинус угла между ними:

$$\bar{a} \bar{b}=\bar{a} \cdot \bar{b}=(\bar{a}, \bar{b})=|\bar{a}||\bar{b}| \cos (\bar{a}, \bar{b})$$

Пример

Задание. Вычислить скалярное произведение векторов $\overline{a}$ и $\overline{b}$ , если их длины соответственно равны 2 и 3, а угол между ними 60°.

Решение. Так как из условия $|\overline{a}|=2$, $|\overline{b}|=3$, а $(\bar{a}, \bar{b})$, то

$\overline{a} \cdot \overline{b}=(\overline{a}, \overline{b})=2 \cdot 3 \cdot \cos 60^{\circ}=6 \cdot \frac{1}{2}=3$

Если хотя бы один из векторов $\overline{a}$ или $\overline{b}$ равен нулевому вектору, то $(\overline{a}, \overline{b})=0$.

Свойства скалярного произведения:

1  $(\overline{a}, \overline{b})=(\overline{b}, \overline{a})$ - симметричность.

2  $(\overline{a}, \overline{a})=|\overline{a}|^{2}$. Обозначается $(\overline{a}, \overline{a})=\overline{a}^{2}$ и называется скалярный квадрат.

3  Если $\overline{a} \neq \overline{0}$, то

4  Если $\overline{a} \neq \overline{0}$ и $\overline{b} \neq \overline{0}$ и $(\overline{a}, \overline{b})=0$, то $\overline{a} \perp \overline{b}$. Верно и обратное утверждение.

5  $(\overline{a}+\overline{b}, \overline{c})=(\overline{a}, \overline{c})+(\overline{b}, \overline{c})$

6  $(\lambda \overline{a}, \overline{b})=\lambda(\overline{a}, \overline{b})$

7  $(\alpha \overline{a}+\beta \overline{b}, \gamma \overline{c}+\delta \overline{d})=\alpha \gamma(\overline{a}, \overline{c})+\alpha \delta(\overline{a}, \overline{d})+\beta \gamma(\overline{b}, \overline{c})+\beta \delta(\overline{b}, \overline{d})$

Если векторы $\overline{a}$ и $\overline{b}$ заданы своими координатами: $\overline{a}=\left(a_{1} ; a_{2} ; a_{3}\right)$, $\overline{b}=\left(b_{1} ; b_{2} ; b_{3}\right)$ , то их скалярное произведение вычисляется по формуле:

1

$(\overline{a}, \overline{b})=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$

Определение

Скалярное произведение векторов, заданных своими координатами, равно сумме произведений соответствующих координат.

Слишком сложно?

Скалярное произведение векторов не по зубам? Тебе ответит эксперт через 10 минут!

Опиши задание

Пример

Задание. Найти скалярное произведение векторов $\overline{a}=(3 ;-1)$ и $\overline{b}=(-2 ; 7)$

Решение. Скалярное произведение

$\overline{a} \overline{b}=3 \cdot(-2)+(-1) \cdot 7=-6-7=-13$

Длина вектора

Длина вектора $\overline{a}=\left(a_{1} ; a_{2} ; a_{3}\right)$, заданного своими координатами, находится по формуле:

$|\overline{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$

Определение

Длина (модуль) вектора, координаты которого известны, равен корню квадратному из суммы квадратов координат.

Пример

Задание. Найти длину вектора $\overline{a}=(-4 ; 3)$

Решение. Используя формулу, получаем:

$|\overline{a}|=\sqrt{(-4)^{2}+3^{2}}=\sqrt{16+9}=\sqrt{25}=5$

Угол между векторами

Угол между двумя векторами $\overline{a}=\left(a_{1} ; a_{2} ; a_{3}\right)$, $\overline{b}=\left(b_{1} ; b_{2} ; b_{3}\right)$:

$$\cos (\bar{a}, \bar{b})=\frac{(\bar{a} ; \bar{b})}{|\bar{a}| \cdot|\bar{b}|}=\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \cdot \sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}}$$

Если угол между двумя векторами острый, то их скалярное произведение положительно; если угол между векторами тупой, то скалярное произведение этих векторов отрицательно. Скалярное произведение двух ненулевых векторов равно нулю, тогда и только тогда, когда эти векторы ортогональны.

Пример

Задание. Найти угол между векторами $\overline{a}=(1 ; \sqrt{3})$ и $\overline{b}=(1 ; 0)$

Решение. Косинус искомого угла

$$\cos (\bar{a}, \bar{b})=\frac{1 \cdot 1+\sqrt{3} \cdot 0}{\sqrt{1^{2}+(\sqrt{3})^{2}} \cdot \sqrt{1^{2}+0^{2}}}=\frac{1}{2}$$ $$(\bar{a}, \bar{b})=\arccos \frac{1}{2}=60^{\circ}$$

Читать дальше: векторное произведение векторов.