Определение

Число, записанное в виде суммы натурального числа и правильной дроби, называется смешанным числом.

Рациональная дробь называется правильной, если ее числитель меньше знаменателя. Если же числитель дроби равен или больше ее знаменателя, то дробь называется неправильной.

Пример

$\frac{3}{5}$    - правильная дробь;

$\frac{5}{3}$    - неправильная дробь.

Правильная дробь меньше единицы, неправильная - больше или равна единице.

Чтобы выделить наибольшее целое число, содержащееся в неправильной дроби, нужно разделить числитель на знаменатель. Если деление выполняется без остатка, то взятая неправильная дробь равна частному.

Слишком сложно?

Смешанные числа (дроби) не по зубам? Тебе ответит эксперт через 10 минут!

Опиши задание

Пример

$\frac{15}{5} = 3$

Если деление выполняется с остатком, то неполное частное дает искомое целое число, остаток стает числителем искомой дробной части, а знаменатель совпадает со знаменателем неправильной дроби.

Пример

Задание. Представить неправильную дробь $\frac{16}{5}$ в виде суммы целого числа и правильной дроби.

Решение. Делим 16 на 5, получаем частное 3 и остаток 1. То есть $\frac{16}{5}=3+\frac{1}{5}$

Данное выражение можно было получить и так:

$\frac{16}{5}=\frac{15+1}{5}=\frac{15}{5}+\frac{1}{5}=3+\frac{1}{5}$

Число, записанное в виде суммы натурального числа и правильной дроби, называется смешанным числом.

Пример

$\frac{16}{5}=3+\frac{1}{5}=3 \frac{1}{5}$

Число $3 \frac{1}{5}$ является смешанным числом или смешанной дробью.

Чтобы представить смешанное число в виде неправильной дроби, нужно умножить его целую часть на знаменатель дробной части и к полученному произведению прибавить числитель дробной части; записать полученную сумму числителем дроби, а знаменатель дробной части оставить без изменения.

Пример

Задание. Записать смешанное число $4 \frac{3}{5}$ в виде неправильной дроби.

Решение. $4 \frac{3}{5}=\frac{4 \cdot 5+3}{5}=\frac{23}{5}$

Читать следующую тему: десятичные дроби.