Задание. Найти матрицу $ C=A-3 B $,
если $ A=\left( \begin{array}{rr}{1} & {2} \\ {2} & {-1} \\ {3} & {0}\end{array}\right) $ ,
$ B=\left( \begin{array}{rr}{-1} & {1} \\ {1} & {2} \\ {0} & {0}\end{array}\right) $
Решение. $ C=A-3 B=\left( \begin{array}{rr}{1} & {2} \\ {2} & {-1} \\ {3} & {0}\end{array}\right)-3 \cdot \left( \begin{array}{rr}{-1} & {1} \\ {1} & {2} \\ {0} & {0}\end{array}\right)= $
$ \left( \begin{array}{rr}{1} & {2} \\ {2} & {-1} \\ {3} & {0}\end{array}\right)-\left( \begin{array}{rr}{-3} & {3} \\ {3} & {6} \\ {0} & {0}\end{array}\right)=\left( \begin{array}{rr}{1-(-3)} & {2-3} \\ {2-3} & {-1-6} \\ {3-0} & {0-0}\end{array}\right)=\left( \begin{array}{rr}{4} & {-1} \\ {-1} & {-7} \\ {3} & {0}\end{array}\right) $
Ответ. $ C=\left( \begin{array}{rr}{4} & {-1} \\ {-1} & {-7} \\ {3} & {0}\end{array}\right) $