Содержание:

Определение и формула силы тока

Определение

Электрическим током называют упорядоченное движение носителей зарядов. В металлах таковыми являются электроны, отрицательно заряженные частицы с зарядом, равным элементарному заряду. Направлением тока считают направление движения положительно заряженных частиц.

Силой тока (током) через некоторую поверхность S называют скалярную физическую величину, которую обозначают I, равную:

$$I=\frac{d q}{d t}$ (1)$

где q – заряд, проходящий сквозь поверхность S, t – время прохождения заряда. Выражение (1) определяет величину силы тока в момент времени t (мгновенное значение величины силы тока).

Некоторые виды силы тока

Ток носит название постоянного, если его сила и направление с течением времени не изменяются, тогда:

$$I=\frac{q}{t}(2)$$

Формула (2) показывает, что сила постоянного тока равна заряду, который проходит сквозь поверхность S в единицу времени.

Если ток является переменным, то выделяют мгновенную силу тока (1), амплитудную силу тока и эффективную силу тока. Эффективной величиной силы переменного тока (Ieff) называют такую силу постоянного тока, которая выполнит работу равную работе переменного тока в течение одного периода (T):

$$I_{e f f}=\sqrt{\frac{1}{T} \int_{0}^{T} I^{2} d t}(3)$$

Если переменный ток можно представить как синусоидальный:

$$I=I_{m} \sin \omega t$$

то Im – амплитуда силы тока ($\omega$ – частота силы переменного тока).

Плотность тока

Распределение электрического тока по сечению проводника характеризуют при помощи вектора плотности тока ($\bar{j}$). При этом:

$$j_{n}=j \cos \alpha=\frac{d I}{d S}(5)$$

где $\alpha$ – угол между векторами $\bar{j}$ и $\bar{n}$ ( $\bar{n}$ – нормаль к элементу поверхности dS), jn – проекция вектора плотности тока на направление нормали ($\bar{n}$).

Сила тока в проводнике определяется при помощи формулы:

$$I=\int_{S} j d S(6)$$

где интегрирование в выражении (6) проводится по всему поперечному сечению проводника S ($\alpha \equiv 0$)

Для постоянного тока имеем:

$I = jS (7)$

Если рассматривать два проводника с сечениями S1 и S2 и постоянными токами, то выполняется соотношение:

$$\frac{j_{1}}{j_{2}}=\frac{S_{2}}{S_{1}}(8)$$

Сила тока в соединениях проводников

При последовательном соединении проводников сила тока в каждом из них одинакова:

$$I=I_{1}=I_{2}=\cdots=I_{i}(9)$$

При параллельном соединении проводников сила тока (I) вычисляется как сумма токов в каждом проводнике (Ii):

$$I=\sum_{i=1}^{n} I_{i}(10)$$

Закон Ома

Сила тока входит в один из основных законов постоянного тока – закон Ома (для участка цепи):

$$I=\frac{\varphi_{1}-\varphi_{2}+\varepsilon}{R}(11)$$

где $\varphi_{1}$ - $\varphi_{2}$ – разность потенциалов на концах, рассматриваемого участка, $\varepsilon$ - ЭДС источника, который входит в участок цепи, R – сопротивление участка цепи.

Единицы измерения силы тока

Основной единицей измерения силы тока в системе СИ является: [I]=A(ампер)=Кл/с

Примеры решения задач

Пример

Задание. Какой заряд (q) проходит через поперечное сечение проводника за промежуток времени от t1=2c до t2=6c, если сила тока изменяется в соответствии с уравнением: I=2+t, где сила тока в амперах, время в секундах?

Решение. За основу решения задачи примем определение мгновенной силы тока:

$$I=\frac{d q}{d t}$$

В таком случае, заряд, который проходит через поперечное сечение проводника, равен:

$$q=\int_{t_{1}}^{t_{2}} I d t(1.2)$$

Подставим в выражение (1.2) уравнение для силы тока из условий задачи, примем во внимания границы изменения участка времени:

$q=\int_{2}^{6}(2+t) d t=2 t+\left.\frac{t^{2}}{2}\right|_{2} ^{6}=(30-6)=24$ (Кл)

Ответ. q=24 Кл

Слишком сложно?

Формула силы тока не по зубам? Тебе ответит эксперт через 10 минут!

Опиши задание

Пример

Задание. Плоский конденсатор составлен из двух квадратных пластин со стороной A, находящихся на расстоянии dдруг от друга. Этот конденсатор подключен к источнику постоянного напряжения U. Конденсатор погружают в сосуд с керосином (пластины конденсатора вертикальны) со скоростью v=const. Какова сила тока, которая будет течь по подводящим проводам в описанном выше процессе. Считать, что диэлектрическая проницаемость керосина равна $\varepsilon$.

Решение. Основой для решения задачи станет формул для вычисления силы тока вида:

$$I=\frac{d q}{d t}(2.1)$$

При погружении в керосин на глубину xописанной выше системы мы получаем два конденсатора, соединенных параллельно (над керосином и в керосине) рис. 2. Для такой системы конденсаторов напряжение на каждом из них одинаково, поэтому уравнение для изменения заряда при движении удобно искать в виде:

$dq = UdC (2.2)$

Емкость при параллельном соединении конденсаторов равна:

$C = C_1 + C_2 (2.3)$

Формула для расчета емкостей C1 и C2 плоских конденсаторов имеет вид:

$$C_{1}=\frac{\varepsilon_{0}(A \cdot(A-v t))}{d}=\frac{\varepsilon_{0}}{d}\left(A^{2}-A v t\right) \rightarrow C_{2}=\frac{\varepsilon \varepsilon_{0}(A v t)}{d}(2.4)$$

где $\varepsilon_{0}$ – электрическая постоянная, переменной величиной при погружении системы в керосин является площадь обкладок S:

$$S_{2}=A \cdot v \cdot t ; S_{1}=A \cdot(A-v t)$$

Из выражений (2.4), (2.5) и условий задачи имеем:

$$d C=d C_{1}+d C_{2}=\frac{\varepsilon \varepsilon_{0} A v d t}{d}-\frac{\varepsilon_{0}}{d} A v d t(2.6)$$

Тогда подставив dC в формулу для силы тока (2.1) получаем:

$$I=U\left(\frac{\varepsilon \varepsilon_{0} A v}{d}-\frac{\varepsilon_{0}}{d} A v\right)=\frac{\varepsilon_{0} U A v}{d}(\varepsilon-1)$$

Ответ. $I=\frac{\varepsilon_{0} U A v}{d}(\varepsilon-1)$


Читать дальше: Формула силы.